>

Version control using Git and GitHub

Git is a source control management tool that tracks changes to files over time and allows users to manage
and document the evolution of a project. GitHub is a web-based platform that hosts Git repositories and
provides additional tools for collaboration, automation, documentation, and issue tracking.

While this protocol cannot be exhaustive, it introduces the most basic operations such as setting up a reposi-
tory, recording file updates through commits, working with branches and forks, and merging contributions
into the main version via pull requests. It also provides recommendations on commit practices, file embed-
ding, privacy, and project sharing that will benefit research groups who want to adopt Git and GitHub not
only for code, but also for notebooks, documentation, protocols, and other project deliverables.

Risk assessment

— Files uploaded to external servers may unintentionally expose sensitive information such as
personal data, credentials, or API tokens.

> DO NOT track sensitive data; use .gitignore to exclude these files

> Avoid destructive flags such as --force, --force-with-lease, and --hard unless you understand
that they rewrite history or discard changes. These operations should only be used deliberately by
the repository owner and should never be used on shared production branches without agreement.

Reviewed: Oct 31, 2025

Procedures

Optional: Creating a GitHub account

(1.) Create a GitHub account at https://github.com/.

Hint: Choose a short, professional username and a strong password. This password is used only for logging into the GitHub
web interface. To work with repositories from your local machine, use fine-grained personal access tokens (PATs) instead.
These are scoped credentials, specifying what actions can be performed and which repositories they apply to.

This is why: Other remote authentication methods like SSH keys or OAuth are supported, but fine-grained PATs provide better
security for collaborative projects.

Working with Git on a local machine

(1.) Confirm Git is installed by running git --version in the terminal. If not, install Git using your sys-
tem's package manager or download it from https://git-scm.com/downloads.

(2.) Optional: Execute the following commands to associate commits with your GitHub identity.

git config --global init.defaultBranch main
git config --global user.name my-gh-name
git config --global user.email id+my-gh-name@users.noreply.github.com

This is why: The first command sets “main” as the default branch name for new repositories. The remaining commands set
username and email address which are included in each commit. If you want privacy, GitHub provides a noreply alias for your
account. Look for “Keep my email addresses private” in your GitHub account settings.

(3.) Navigate to the project folder, then initialize a new Git repository with

cd /path/to/my-local-repository
git init
This is why: This creates a hidden .git directory within the current folder to track version history. You can also provide a

positional argument git init my-folder to create and initialize Git on a subfolder in the current directory.

Hint: You can name the project folder freely, but using a short, lowercase name with dashes instead of spaces is recommended.

(4.) Create or modify files in the folder.

SOP0101 - Rev. 251031 - Printed 251103.21 - CC-BY-SA-4.0 Page 1of 6

Version control using Git and GitHub

(5.) Inspect which files have changed.

git status
git diff

Add (“stage”) files or part of a file to include in the next snapshot:

git add .
git add my-file
git add -p my-file

(6.) Optional: To prevent certain files from being tracked, create a .gitignore file in the repository root
and list patterns for files or directories that should be excluded on individual lines.

Hint: Use a command line editor such as nano .gitignore to create or edit this file. Typical patterns include, for example,
*.log, __pycache__/,ormy_patient_data.csv. Once added, matching files should no longer appear on git status.

(7.) Create a versioned snapshot of the staged files.
git commit -m "Commit message"

Hint: A good commit message is a short, present-tense summary of its consequences such as “Add scripts for data loading
from PubMed”, “Change default font size for printing”, “Fix typo in README.md"”.

(8.) Repeat editing, staging, and committing as needed. Use git log to view the commit history.
Advanced Git operations

(1.) Optional: Use git stash to temporarily save all tracked changes (both staged and unstaged) without
committing. You can recover the most recent stash later using git stash pop.

Hint: This is useful if you need to switch branches or pull updates but aren’t ready to commit your current changes. Untracked
files and ignored files are not stashed by default unless explicitly included. You can use git stash list to view all saved
stashes, and git stash drop stash@{n} to delete one.

(2.) Optional: To recover a previous state after committing, execute:

. git reset --soft HEAD~1 to undo the last commit without deleting changes.

This is why: This moves the branch pointer back by one commit and stages the changes again, allowing you to amend
them. No changes will be undone and no files will be removed.

. git reset --mixed HEAD~1 to undo the last commit and unstage the changes.
This is why: The changes will remain in your working directory but not be staged.

e git reset --hard HEAD-1 to discard the last commit and all its changes completely.

Critical: Any local changes that were part of that commit will be permanently discarded and cannot be restored with
Git.

Hint: A safer option can be git reset --keep HEAD~1 which only resets the files which are different between the
current head and the given commit. It aborts the reset if there are one or more uncommitted changes in other files.

(3.) Optional: To undo changes in the working directory before committing, run
. git reset my-file to remove the file from the staging area and add further edits.

° git checkout -- my-file to discard all unsaved changes in the file.

Critical: Only use this if you are sure you want to go back to the last committed version of that file.

(4.) Optional: At important milestones such as manuscript submissions, dataset releases, or publication,
add semantic versioning such as git tag v1.0.0.
Resource: Semantic Versioning (https://semver.org/) differentiates “major”, “minor”, and “patch” versions. Major versions
may be incompatible, while minor versions add functionality or bug fixes in a backward-compatible manner respectively.

SOP0101 - Rev. 251031 - Printed 251103.21 - CC-BY-SA-4.0 Page 2 of 6

>>

>>

Version control using Git and GitHub

Working with branches and merging changes

(1.) View available branches with git branch. The current branch is marked with an asterisk.
Note: The default branch is usually named “main”, but it may be called “master” in older Git installations.
(2.) Create a new branch and/or switch to it.

git branch my-feature
git checkout my-feature

This is why: Branches can be used to work on experimental changes or additions without affecting the main history. If pushed
to a remote repository, they can also backup your work in progress. You may want the remote repository to be private.

Hint: To push the current branch only if present in the remote, set git config push.default simple. You may want this
setup when working on public remote repositories.

(3.) Edit, stage, and commit changes on the new branch as usual.
(4.) Update your new branch with the latest changes from the main branch.

git fetch origin
git merge origin/main

(5.) When done, switch back to the main branch. After you merge your feature branch, you can delete it.

git checkout main
git merge my-feature
git branch -d my-feature

Hint: This removes the branch label, not the commits. It’s safe to delete a branch after merging and will keep the repository
readable. You can always create a new branch later for the next change.

Working with remote repositories on GitHub

(1.) Create a new repository on GitHub using the web interface.
° Make the repository private. You can publish the repository later.

. Initialize the repository with a README.md and a .gitignore file.

Critical: Before first push, confirm that . gitignore excludes any files that contain private data, credentials, personal
identifiers, or unpublished results. GitHub is public by default and search engines can index it quickly.

. If institutional guidelines do not otherwise specify, choose a permissive license for your work:

License Attribution Share alike Commercial use Patent clause Recommended use

CC0-1.0 No No Yes No Public domain datasets; templates;
code snippets

CC-BY-4.0 Yes No Yes No Protocols, educational content, doc-
umentation

MIT Yes No Yes No Code for figures, small analysis
scripts

Apache2.0 Yes No Yes Yes Reusable libraries, substantial acad-

emic/industry software

GPLv3 Yes Yes Yes Yes Full analysis pipelines where open-
ness of all modifications is required

Please do not add a license to the repository if you are unsure. Software and documentation
licenses are not revocable once published and may affect collaborators and reuse policies.

Hint: For software and code, Creative Commons (CC) licenses are not suitable. Instead, use a software license such as
MIT, Apache 2.0, or GPLv3. If your repository includes or modifies code licensed under GPL, your entire repository
must adopt a GPL-compatible license such as GPL, MIT, or BSD. Apache 2.0 is not compatible with GPL.

SOP0101 - Rev. 251031 - Printed 251103.21 - CC-BY-SA-4.0 Page 3 of 6

>>

Version control using Git and GitHub

(2.) Critical: Generate a fine-grained personal access token (PAT) for remote authentication:

° Go to https://github.com/settings/personal-access-tokens/ and select “Generate new token”.
. Provide a token name and expiration date.
. Choose “All repositories” to allow access to future repositories, or explicitly select existing ones.

Hint: To get a token for a collaboration project, the repository owner must have first added you as a collaborator.
e Under “Repository permissions”, set “Contents” to “Read and write”.

. Click “Generate token” and copy the generated string to your clipboard.

Hint: After the first clone or push, Git may prompt for your GitHub credentials. Use your username and paste your
fine-grained PAT as the password; Git is typically configured to securely store your token using the system password
manager via git config --global credential.helper manager (Windows) or osxkeychain (macOS).

(3.) Create a copy of the remote repository on your local machine, or link a local repository to the remote,
by executing one of the following commands:

git clone gh-repo-url.git
git remote add origin gh-repo-url.git

(4.) To retrieve changes from the remote repository, execute:

git fetch origin
git merge origin/main

Hint: This two-step method is safer for avoiding unintended overwrites or merge conflicts when local file changes exist. git
pull origin main is faster but may create automatic merge commits or conflicts if your local branch has diverged.

(5.) Upload your committed local changes to the remote repository with

git push origin main
Collaborating on remote repositories with GitHub

(1.) Asrepository owner, add collaborators to your repository; set privileges as appropriate.

Hint: For public repositories, users can also contribute via pull requests without being added explicitly.
(2.) Optional: As repository owner, create a development branch for the project once

git checkout -b dev
git push origin dev

(3.) As a collaborator, accept the invitation, pull the repository, and create a new branch for your edits to
isolate changes and make reviewing easier.

git pull origin dev # or ‘main’ if no development branch exists
git checkout -b my-feature
git push origin my-feature
(4.) Edit, stage, commit, and push changes on your branch as usual.
This is why: Pushing will make your branch visible to other collaborators and allows you to create a pull request (PR).
Critical: Pull the latest changes regularly from the remote repository to keep your local repository up to date.
(5.) Once your branch is ready to be merged, create a pull request on GitHub:
e Navigate to the repository on GitHub, click “Compare & pull request”.

Hint: For production repositories, request a merge from the feature branch into the dev branch for active development
first. Merge the dev branch to the main branch for stable releases.

SOP0101 - Rev. 251031 - Printed 251103.21 - CC-BY-SA-4.0 Page 4 of 6

T

>

Version control using Git and GitHub

° Respond to comments and update the pull request as needed.

Note: You can push additional commits to the same branch to update an open pull request.

. Once approved, the pull request will be merged into the development or the main branch.

% [PGW+16]

Repository transfer

(1)

(2)

3)

(4.)

(5)

(6.)
(7.)
(8)

Audit the repository.
e No pending branches, unmerged pull requests, or unpublished changes?

e No dependencies on private data or credentials?

Finalize README . md to reflect the latest project title, description, and status of the project.
Hint: Highlight key contributors, funding sources, dependencies on software versions, datasets, and analysis pipelines.
Create a final release tag so there is a citable, frozen snapshot of the code at time of handoff.

git tag v1.0.0-final
git push origin v1.0.0-final

Optional: For published work, link the repository to Zenodo.

Resource: The repository is then stored safely for the future in CERN’s Data Centre (https://zenodo.org/) for as long as CERN
exists. Every upload is assigned a digital object identifier (DOI), making it citable and trackable.

Critical: If the repository is associated with a personal GitHub account, transfer the repository to a
designated maintainer, the lab’s GitHub account or the institutional GitHub organization. Ensure a
maintainer is assigned for substantial software projects.

Note: The target organization must be configured to accept outside transfers.
Remove the departing member’s write/admin access after transfer is complete.
Archive the repository if it is no longer maintained. Archived repositories are read-only.

Add the repository title, archive status, and DOI to the lab’s knowledgebase or data inventory.

List of references

Y. Perez-Riverol, L. Gatto, R. Wang, T. Sachsenberg,
J. Uszkoreit, F. da Veiga Leprevost, C. Fufezan, T.
Ternent, S.J. Eglen, D.S. Katz et al.,, PLoS Comput.
Biol. 12(7), 1004947 (2016).

SOP0101 - Rev. 251031 - Printed 251103.21 - CC-BY-SA-4.0 Page 50f 6

Version control using Git and GitHub

Change log

2025-07-26 Benjamin C. Buchmuller Initial commit.
2025-10-25 Benjamin C. Buchmuller Clarified branch/merge workflow and revised code.
2025-10-31 Benjamin C. Buchmuller Clarified credential manager setup.

Open Protocol — Part of the Lab Protocols collection (2025) by B. C. Buchmuller and contributors. This
document is made available under the Creative Commons Attribution Share Alike 4.0 International License. To view
a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/.

For research use only. Provided in good faith, without warranty or liability for any use or results. Users are responsible
for compliance with local regulations and institutional policies.

Current when printed. Visit https://benjbuch.github.io/check/ or scan the QR code to check for updates.

SOP0101 - Rev. 251031 - Printed 251103.21 - CC-BY-SA-4.0

c516bcl

Page 6 of 6

https://benjbuch.github.io/check/?q=c516bc1
https://benjbuch.github.io/check/

